\(\int (e x)^{-1+3 n} (a+b \csc (c+d x^n))^2 \, dx\) [78]

   Optimal result
   Rubi [A] (verified)
   Mathematica [F]
   Maple [F]
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 377 \[ \int (e x)^{-1+3 n} \left (a+b \csc \left (c+d x^n\right )\right )^2 \, dx=\frac {a^2 (e x)^{3 n}}{3 e n}-\frac {i b^2 x^{-n} (e x)^{3 n}}{d e n}-\frac {4 a b x^{-n} (e x)^{3 n} \text {arctanh}\left (e^{i \left (c+d x^n\right )}\right )}{d e n}-\frac {b^2 x^{-n} (e x)^{3 n} \cot \left (c+d x^n\right )}{d e n}+\frac {2 b^2 x^{-2 n} (e x)^{3 n} \log \left (1-e^{2 i \left (c+d x^n\right )}\right )}{d^2 e n}+\frac {4 i a b x^{-2 n} (e x)^{3 n} \operatorname {PolyLog}\left (2,-e^{i \left (c+d x^n\right )}\right )}{d^2 e n}-\frac {4 i a b x^{-2 n} (e x)^{3 n} \operatorname {PolyLog}\left (2,e^{i \left (c+d x^n\right )}\right )}{d^2 e n}-\frac {i b^2 x^{-3 n} (e x)^{3 n} \operatorname {PolyLog}\left (2,e^{2 i \left (c+d x^n\right )}\right )}{d^3 e n}-\frac {4 a b x^{-3 n} (e x)^{3 n} \operatorname {PolyLog}\left (3,-e^{i \left (c+d x^n\right )}\right )}{d^3 e n}+\frac {4 a b x^{-3 n} (e x)^{3 n} \operatorname {PolyLog}\left (3,e^{i \left (c+d x^n\right )}\right )}{d^3 e n} \]

[Out]

1/3*a^2*(e*x)^(3*n)/e/n-I*b^2*(e*x)^(3*n)/d/e/n/(x^n)-4*a*b*(e*x)^(3*n)*arctanh(exp(I*(c+d*x^n)))/d/e/n/(x^n)-
b^2*(e*x)^(3*n)*cot(c+d*x^n)/d/e/n/(x^n)+2*b^2*(e*x)^(3*n)*ln(1-exp(2*I*(c+d*x^n)))/d^2/e/n/(x^(2*n))+4*I*a*b*
(e*x)^(3*n)*polylog(2,-exp(I*(c+d*x^n)))/d^2/e/n/(x^(2*n))-4*I*a*b*(e*x)^(3*n)*polylog(2,exp(I*(c+d*x^n)))/d^2
/e/n/(x^(2*n))-I*b^2*(e*x)^(3*n)*polylog(2,exp(2*I*(c+d*x^n)))/d^3/e/n/(x^(3*n))-4*a*b*(e*x)^(3*n)*polylog(3,-
exp(I*(c+d*x^n)))/d^3/e/n/(x^(3*n))+4*a*b*(e*x)^(3*n)*polylog(3,exp(I*(c+d*x^n)))/d^3/e/n/(x^(3*n))

Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 377, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {4294, 4290, 4275, 4268, 2611, 2320, 6724, 4269, 3798, 2221, 2317, 2438} \[ \int (e x)^{-1+3 n} \left (a+b \csc \left (c+d x^n\right )\right )^2 \, dx=\frac {a^2 (e x)^{3 n}}{3 e n}-\frac {4 a b x^{-n} (e x)^{3 n} \text {arctanh}\left (e^{i \left (c+d x^n\right )}\right )}{d e n}-\frac {4 a b x^{-3 n} (e x)^{3 n} \operatorname {PolyLog}\left (3,-e^{i \left (d x^n+c\right )}\right )}{d^3 e n}+\frac {4 a b x^{-3 n} (e x)^{3 n} \operatorname {PolyLog}\left (3,e^{i \left (d x^n+c\right )}\right )}{d^3 e n}+\frac {4 i a b x^{-2 n} (e x)^{3 n} \operatorname {PolyLog}\left (2,-e^{i \left (d x^n+c\right )}\right )}{d^2 e n}-\frac {4 i a b x^{-2 n} (e x)^{3 n} \operatorname {PolyLog}\left (2,e^{i \left (d x^n+c\right )}\right )}{d^2 e n}-\frac {i b^2 x^{-3 n} (e x)^{3 n} \operatorname {PolyLog}\left (2,e^{2 i \left (d x^n+c\right )}\right )}{d^3 e n}+\frac {2 b^2 x^{-2 n} (e x)^{3 n} \log \left (1-e^{2 i \left (c+d x^n\right )}\right )}{d^2 e n}-\frac {b^2 x^{-n} (e x)^{3 n} \cot \left (c+d x^n\right )}{d e n}-\frac {i b^2 x^{-n} (e x)^{3 n}}{d e n} \]

[In]

Int[(e*x)^(-1 + 3*n)*(a + b*Csc[c + d*x^n])^2,x]

[Out]

(a^2*(e*x)^(3*n))/(3*e*n) - (I*b^2*(e*x)^(3*n))/(d*e*n*x^n) - (4*a*b*(e*x)^(3*n)*ArcTanh[E^(I*(c + d*x^n))])/(
d*e*n*x^n) - (b^2*(e*x)^(3*n)*Cot[c + d*x^n])/(d*e*n*x^n) + (2*b^2*(e*x)^(3*n)*Log[1 - E^((2*I)*(c + d*x^n))])
/(d^2*e*n*x^(2*n)) + ((4*I)*a*b*(e*x)^(3*n)*PolyLog[2, -E^(I*(c + d*x^n))])/(d^2*e*n*x^(2*n)) - ((4*I)*a*b*(e*
x)^(3*n)*PolyLog[2, E^(I*(c + d*x^n))])/(d^2*e*n*x^(2*n)) - (I*b^2*(e*x)^(3*n)*PolyLog[2, E^((2*I)*(c + d*x^n)
)])/(d^3*e*n*x^(3*n)) - (4*a*b*(e*x)^(3*n)*PolyLog[3, -E^(I*(c + d*x^n))])/(d^3*e*n*x^(3*n)) + (4*a*b*(e*x)^(3
*n)*PolyLog[3, E^(I*(c + d*x^n))])/(d^3*e*n*x^(3*n))

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2320

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 2611

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(
f + g*x)^m)*(PolyLog[2, (-e)*(F^(c*(a + b*x)))^n]/(b*c*n*Log[F])), x] + Dist[g*(m/(b*c*n*Log[F])), Int[(f + g*
x)^(m - 1)*PolyLog[2, (-e)*(F^(c*(a + b*x)))^n], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 3798

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Simp[I*((c + d*x)^(m + 1)/(d*(
m + 1))), x] - Dist[2*I, Int[(c + d*x)^m*E^(2*I*k*Pi)*(E^(2*I*(e + f*x))/(1 + E^(2*I*k*Pi)*E^(2*I*(e + f*x))))
, x], x] /; FreeQ[{c, d, e, f}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 4268

Int[csc[(e_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[-2*(c + d*x)^m*(ArcTanh[E^(I*(e + f*
x))]/f), x] + (-Dist[d*(m/f), Int[(c + d*x)^(m - 1)*Log[1 - E^(I*(e + f*x))], x], x] + Dist[d*(m/f), Int[(c +
d*x)^(m - 1)*Log[1 + E^(I*(e + f*x))], x], x]) /; FreeQ[{c, d, e, f}, x] && IGtQ[m, 0]

Rule 4269

Int[csc[(e_.) + (f_.)*(x_)]^2*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(c + d*x)^m)*(Cot[e + f*x]/f), x
] + Dist[d*(m/f), Int[(c + d*x)^(m - 1)*Cot[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 4275

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[
(c + d*x)^m, (a + b*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[m, 0] && IGtQ[n, 0]

Rule 4290

Int[((a_.) + Csc[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*Csc[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplify[
(m + 1)/n], 0] && IntegerQ[p]

Rule 4294

Int[((a_.) + Csc[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_)*(x_))^(m_.), x_Symbol] :> Dist[e^IntPart[m]*((e*x
)^FracPart[m]/x^FracPart[m]), Int[x^m*(a + b*Csc[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]

Rule 6724

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (x^{-3 n} (e x)^{3 n}\right ) \int x^{-1+3 n} \left (a+b \csc \left (c+d x^n\right )\right )^2 \, dx}{e} \\ & = \frac {\left (x^{-3 n} (e x)^{3 n}\right ) \text {Subst}\left (\int x^2 (a+b \csc (c+d x))^2 \, dx,x,x^n\right )}{e n} \\ & = \frac {\left (x^{-3 n} (e x)^{3 n}\right ) \text {Subst}\left (\int \left (a^2 x^2+2 a b x^2 \csc (c+d x)+b^2 x^2 \csc ^2(c+d x)\right ) \, dx,x,x^n\right )}{e n} \\ & = \frac {a^2 (e x)^{3 n}}{3 e n}+\frac {\left (2 a b x^{-3 n} (e x)^{3 n}\right ) \text {Subst}\left (\int x^2 \csc (c+d x) \, dx,x,x^n\right )}{e n}+\frac {\left (b^2 x^{-3 n} (e x)^{3 n}\right ) \text {Subst}\left (\int x^2 \csc ^2(c+d x) \, dx,x,x^n\right )}{e n} \\ & = \frac {a^2 (e x)^{3 n}}{3 e n}-\frac {4 a b x^{-n} (e x)^{3 n} \text {arctanh}\left (e^{i \left (c+d x^n\right )}\right )}{d e n}-\frac {b^2 x^{-n} (e x)^{3 n} \cot \left (c+d x^n\right )}{d e n}-\frac {\left (4 a b x^{-3 n} (e x)^{3 n}\right ) \text {Subst}\left (\int x \log \left (1-e^{i (c+d x)}\right ) \, dx,x,x^n\right )}{d e n}+\frac {\left (4 a b x^{-3 n} (e x)^{3 n}\right ) \text {Subst}\left (\int x \log \left (1+e^{i (c+d x)}\right ) \, dx,x,x^n\right )}{d e n}+\frac {\left (2 b^2 x^{-3 n} (e x)^{3 n}\right ) \text {Subst}\left (\int x \cot (c+d x) \, dx,x,x^n\right )}{d e n} \\ & = \frac {a^2 (e x)^{3 n}}{3 e n}-\frac {i b^2 x^{-n} (e x)^{3 n}}{d e n}-\frac {4 a b x^{-n} (e x)^{3 n} \text {arctanh}\left (e^{i \left (c+d x^n\right )}\right )}{d e n}-\frac {b^2 x^{-n} (e x)^{3 n} \cot \left (c+d x^n\right )}{d e n}+\frac {4 i a b x^{-2 n} (e x)^{3 n} \operatorname {PolyLog}\left (2,-e^{i \left (c+d x^n\right )}\right )}{d^2 e n}-\frac {4 i a b x^{-2 n} (e x)^{3 n} \operatorname {PolyLog}\left (2,e^{i \left (c+d x^n\right )}\right )}{d^2 e n}-\frac {\left (4 i a b x^{-3 n} (e x)^{3 n}\right ) \text {Subst}\left (\int \operatorname {PolyLog}\left (2,-e^{i (c+d x)}\right ) \, dx,x,x^n\right )}{d^2 e n}+\frac {\left (4 i a b x^{-3 n} (e x)^{3 n}\right ) \text {Subst}\left (\int \operatorname {PolyLog}\left (2,e^{i (c+d x)}\right ) \, dx,x,x^n\right )}{d^2 e n}-\frac {\left (4 i b^2 x^{-3 n} (e x)^{3 n}\right ) \text {Subst}\left (\int \frac {e^{2 i (c+d x)} x}{1-e^{2 i (c+d x)}} \, dx,x,x^n\right )}{d e n} \\ & = \frac {a^2 (e x)^{3 n}}{3 e n}-\frac {i b^2 x^{-n} (e x)^{3 n}}{d e n}-\frac {4 a b x^{-n} (e x)^{3 n} \text {arctanh}\left (e^{i \left (c+d x^n\right )}\right )}{d e n}-\frac {b^2 x^{-n} (e x)^{3 n} \cot \left (c+d x^n\right )}{d e n}+\frac {2 b^2 x^{-2 n} (e x)^{3 n} \log \left (1-e^{2 i \left (c+d x^n\right )}\right )}{d^2 e n}+\frac {4 i a b x^{-2 n} (e x)^{3 n} \operatorname {PolyLog}\left (2,-e^{i \left (c+d x^n\right )}\right )}{d^2 e n}-\frac {4 i a b x^{-2 n} (e x)^{3 n} \operatorname {PolyLog}\left (2,e^{i \left (c+d x^n\right )}\right )}{d^2 e n}-\frac {\left (4 a b x^{-3 n} (e x)^{3 n}\right ) \text {Subst}\left (\int \frac {\operatorname {PolyLog}(2,-x)}{x} \, dx,x,e^{i \left (c+d x^n\right )}\right )}{d^3 e n}+\frac {\left (4 a b x^{-3 n} (e x)^{3 n}\right ) \text {Subst}\left (\int \frac {\operatorname {PolyLog}(2,x)}{x} \, dx,x,e^{i \left (c+d x^n\right )}\right )}{d^3 e n}-\frac {\left (2 b^2 x^{-3 n} (e x)^{3 n}\right ) \text {Subst}\left (\int \log \left (1-e^{2 i (c+d x)}\right ) \, dx,x,x^n\right )}{d^2 e n} \\ & = \frac {a^2 (e x)^{3 n}}{3 e n}-\frac {i b^2 x^{-n} (e x)^{3 n}}{d e n}-\frac {4 a b x^{-n} (e x)^{3 n} \text {arctanh}\left (e^{i \left (c+d x^n\right )}\right )}{d e n}-\frac {b^2 x^{-n} (e x)^{3 n} \cot \left (c+d x^n\right )}{d e n}+\frac {2 b^2 x^{-2 n} (e x)^{3 n} \log \left (1-e^{2 i \left (c+d x^n\right )}\right )}{d^2 e n}+\frac {4 i a b x^{-2 n} (e x)^{3 n} \operatorname {PolyLog}\left (2,-e^{i \left (c+d x^n\right )}\right )}{d^2 e n}-\frac {4 i a b x^{-2 n} (e x)^{3 n} \operatorname {PolyLog}\left (2,e^{i \left (c+d x^n\right )}\right )}{d^2 e n}-\frac {4 a b x^{-3 n} (e x)^{3 n} \operatorname {PolyLog}\left (3,-e^{i \left (c+d x^n\right )}\right )}{d^3 e n}+\frac {4 a b x^{-3 n} (e x)^{3 n} \operatorname {PolyLog}\left (3,e^{i \left (c+d x^n\right )}\right )}{d^3 e n}+\frac {\left (i b^2 x^{-3 n} (e x)^{3 n}\right ) \text {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{2 i \left (c+d x^n\right )}\right )}{d^3 e n} \\ & = \frac {a^2 (e x)^{3 n}}{3 e n}-\frac {i b^2 x^{-n} (e x)^{3 n}}{d e n}-\frac {4 a b x^{-n} (e x)^{3 n} \text {arctanh}\left (e^{i \left (c+d x^n\right )}\right )}{d e n}-\frac {b^2 x^{-n} (e x)^{3 n} \cot \left (c+d x^n\right )}{d e n}+\frac {2 b^2 x^{-2 n} (e x)^{3 n} \log \left (1-e^{2 i \left (c+d x^n\right )}\right )}{d^2 e n}+\frac {4 i a b x^{-2 n} (e x)^{3 n} \operatorname {PolyLog}\left (2,-e^{i \left (c+d x^n\right )}\right )}{d^2 e n}-\frac {4 i a b x^{-2 n} (e x)^{3 n} \operatorname {PolyLog}\left (2,e^{i \left (c+d x^n\right )}\right )}{d^2 e n}-\frac {i b^2 x^{-3 n} (e x)^{3 n} \operatorname {PolyLog}\left (2,e^{2 i \left (c+d x^n\right )}\right )}{d^3 e n}-\frac {4 a b x^{-3 n} (e x)^{3 n} \operatorname {PolyLog}\left (3,-e^{i \left (c+d x^n\right )}\right )}{d^3 e n}+\frac {4 a b x^{-3 n} (e x)^{3 n} \operatorname {PolyLog}\left (3,e^{i \left (c+d x^n\right )}\right )}{d^3 e n} \\ \end{align*}

Mathematica [F]

\[ \int (e x)^{-1+3 n} \left (a+b \csc \left (c+d x^n\right )\right )^2 \, dx=\int (e x)^{-1+3 n} \left (a+b \csc \left (c+d x^n\right )\right )^2 \, dx \]

[In]

Integrate[(e*x)^(-1 + 3*n)*(a + b*Csc[c + d*x^n])^2,x]

[Out]

Integrate[(e*x)^(-1 + 3*n)*(a + b*Csc[c + d*x^n])^2, x]

Maple [F]

\[\int \left (e x \right )^{-1+3 n} {\left (a +b \csc \left (c +d \,x^{n}\right )\right )}^{2}d x\]

[In]

int((e*x)^(-1+3*n)*(a+b*csc(c+d*x^n))^2,x)

[Out]

int((e*x)^(-1+3*n)*(a+b*csc(c+d*x^n))^2,x)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 890 vs. \(2 (362) = 724\).

Time = 0.30 (sec) , antiderivative size = 890, normalized size of antiderivative = 2.36 \[ \int (e x)^{-1+3 n} \left (a+b \csc \left (c+d x^n\right )\right )^2 \, dx=\frac {a^{2} d^{3} e^{3 \, n - 1} x^{3 \, n} \sin \left (d x^{n} + c\right ) - 3 \, b^{2} d^{2} e^{3 \, n - 1} x^{2 \, n} \cos \left (d x^{n} + c\right ) + 6 \, a b e^{3 \, n - 1} {\rm polylog}\left (3, \cos \left (d x^{n} + c\right ) + i \, \sin \left (d x^{n} + c\right )\right ) \sin \left (d x^{n} + c\right ) + 6 \, a b e^{3 \, n - 1} {\rm polylog}\left (3, \cos \left (d x^{n} + c\right ) - i \, \sin \left (d x^{n} + c\right )\right ) \sin \left (d x^{n} + c\right ) - 6 \, a b e^{3 \, n - 1} {\rm polylog}\left (3, -\cos \left (d x^{n} + c\right ) + i \, \sin \left (d x^{n} + c\right )\right ) \sin \left (d x^{n} + c\right ) - 6 \, a b e^{3 \, n - 1} {\rm polylog}\left (3, -\cos \left (d x^{n} + c\right ) - i \, \sin \left (d x^{n} + c\right )\right ) \sin \left (d x^{n} + c\right ) + 3 \, {\left (a b c^{2} - b^{2} c\right )} e^{3 \, n - 1} \log \left (-\frac {1}{2} \, \cos \left (d x^{n} + c\right ) + \frac {1}{2} i \, \sin \left (d x^{n} + c\right ) + \frac {1}{2}\right ) \sin \left (d x^{n} + c\right ) + 3 \, {\left (a b c^{2} - b^{2} c\right )} e^{3 \, n - 1} \log \left (-\frac {1}{2} \, \cos \left (d x^{n} + c\right ) - \frac {1}{2} i \, \sin \left (d x^{n} + c\right ) + \frac {1}{2}\right ) \sin \left (d x^{n} + c\right ) - 3 \, {\left (2 i \, a b d e^{3 \, n - 1} x^{n} + i \, b^{2} e^{3 \, n - 1}\right )} {\rm Li}_2\left (\cos \left (d x^{n} + c\right ) + i \, \sin \left (d x^{n} + c\right )\right ) \sin \left (d x^{n} + c\right ) - 3 \, {\left (-2 i \, a b d e^{3 \, n - 1} x^{n} - i \, b^{2} e^{3 \, n - 1}\right )} {\rm Li}_2\left (\cos \left (d x^{n} + c\right ) - i \, \sin \left (d x^{n} + c\right )\right ) \sin \left (d x^{n} + c\right ) - 3 \, {\left (2 i \, a b d e^{3 \, n - 1} x^{n} - i \, b^{2} e^{3 \, n - 1}\right )} {\rm Li}_2\left (-\cos \left (d x^{n} + c\right ) + i \, \sin \left (d x^{n} + c\right )\right ) \sin \left (d x^{n} + c\right ) - 3 \, {\left (-2 i \, a b d e^{3 \, n - 1} x^{n} + i \, b^{2} e^{3 \, n - 1}\right )} {\rm Li}_2\left (-\cos \left (d x^{n} + c\right ) - i \, \sin \left (d x^{n} + c\right )\right ) \sin \left (d x^{n} + c\right ) - 3 \, {\left (a b d^{2} e^{3 \, n - 1} x^{2 \, n} - b^{2} d e^{3 \, n - 1} x^{n}\right )} \log \left (\cos \left (d x^{n} + c\right ) + i \, \sin \left (d x^{n} + c\right ) + 1\right ) \sin \left (d x^{n} + c\right ) - 3 \, {\left (a b d^{2} e^{3 \, n - 1} x^{2 \, n} - b^{2} d e^{3 \, n - 1} x^{n}\right )} \log \left (\cos \left (d x^{n} + c\right ) - i \, \sin \left (d x^{n} + c\right ) + 1\right ) \sin \left (d x^{n} + c\right ) + 3 \, {\left (a b d^{2} e^{3 \, n - 1} x^{2 \, n} + b^{2} d e^{3 \, n - 1} x^{n} - {\left (a b c^{2} - b^{2} c\right )} e^{3 \, n - 1}\right )} \log \left (-\cos \left (d x^{n} + c\right ) + i \, \sin \left (d x^{n} + c\right ) + 1\right ) \sin \left (d x^{n} + c\right ) + 3 \, {\left (a b d^{2} e^{3 \, n - 1} x^{2 \, n} + b^{2} d e^{3 \, n - 1} x^{n} - {\left (a b c^{2} - b^{2} c\right )} e^{3 \, n - 1}\right )} \log \left (-\cos \left (d x^{n} + c\right ) - i \, \sin \left (d x^{n} + c\right ) + 1\right ) \sin \left (d x^{n} + c\right )}{3 \, d^{3} n \sin \left (d x^{n} + c\right )} \]

[In]

integrate((e*x)^(-1+3*n)*(a+b*csc(c+d*x^n))^2,x, algorithm="fricas")

[Out]

1/3*(a^2*d^3*e^(3*n - 1)*x^(3*n)*sin(d*x^n + c) - 3*b^2*d^2*e^(3*n - 1)*x^(2*n)*cos(d*x^n + c) + 6*a*b*e^(3*n
- 1)*polylog(3, cos(d*x^n + c) + I*sin(d*x^n + c))*sin(d*x^n + c) + 6*a*b*e^(3*n - 1)*polylog(3, cos(d*x^n + c
) - I*sin(d*x^n + c))*sin(d*x^n + c) - 6*a*b*e^(3*n - 1)*polylog(3, -cos(d*x^n + c) + I*sin(d*x^n + c))*sin(d*
x^n + c) - 6*a*b*e^(3*n - 1)*polylog(3, -cos(d*x^n + c) - I*sin(d*x^n + c))*sin(d*x^n + c) + 3*(a*b*c^2 - b^2*
c)*e^(3*n - 1)*log(-1/2*cos(d*x^n + c) + 1/2*I*sin(d*x^n + c) + 1/2)*sin(d*x^n + c) + 3*(a*b*c^2 - b^2*c)*e^(3
*n - 1)*log(-1/2*cos(d*x^n + c) - 1/2*I*sin(d*x^n + c) + 1/2)*sin(d*x^n + c) - 3*(2*I*a*b*d*e^(3*n - 1)*x^n +
I*b^2*e^(3*n - 1))*dilog(cos(d*x^n + c) + I*sin(d*x^n + c))*sin(d*x^n + c) - 3*(-2*I*a*b*d*e^(3*n - 1)*x^n - I
*b^2*e^(3*n - 1))*dilog(cos(d*x^n + c) - I*sin(d*x^n + c))*sin(d*x^n + c) - 3*(2*I*a*b*d*e^(3*n - 1)*x^n - I*b
^2*e^(3*n - 1))*dilog(-cos(d*x^n + c) + I*sin(d*x^n + c))*sin(d*x^n + c) - 3*(-2*I*a*b*d*e^(3*n - 1)*x^n + I*b
^2*e^(3*n - 1))*dilog(-cos(d*x^n + c) - I*sin(d*x^n + c))*sin(d*x^n + c) - 3*(a*b*d^2*e^(3*n - 1)*x^(2*n) - b^
2*d*e^(3*n - 1)*x^n)*log(cos(d*x^n + c) + I*sin(d*x^n + c) + 1)*sin(d*x^n + c) - 3*(a*b*d^2*e^(3*n - 1)*x^(2*n
) - b^2*d*e^(3*n - 1)*x^n)*log(cos(d*x^n + c) - I*sin(d*x^n + c) + 1)*sin(d*x^n + c) + 3*(a*b*d^2*e^(3*n - 1)*
x^(2*n) + b^2*d*e^(3*n - 1)*x^n - (a*b*c^2 - b^2*c)*e^(3*n - 1))*log(-cos(d*x^n + c) + I*sin(d*x^n + c) + 1)*s
in(d*x^n + c) + 3*(a*b*d^2*e^(3*n - 1)*x^(2*n) + b^2*d*e^(3*n - 1)*x^n - (a*b*c^2 - b^2*c)*e^(3*n - 1))*log(-c
os(d*x^n + c) - I*sin(d*x^n + c) + 1)*sin(d*x^n + c))/(d^3*n*sin(d*x^n + c))

Sympy [F]

\[ \int (e x)^{-1+3 n} \left (a+b \csc \left (c+d x^n\right )\right )^2 \, dx=\int \left (e x\right )^{3 n - 1} \left (a + b \csc {\left (c + d x^{n} \right )}\right )^{2}\, dx \]

[In]

integrate((e*x)**(-1+3*n)*(a+b*csc(c+d*x**n))**2,x)

[Out]

Integral((e*x)**(3*n - 1)*(a + b*csc(c + d*x**n))**2, x)

Maxima [F]

\[ \int (e x)^{-1+3 n} \left (a+b \csc \left (c+d x^n\right )\right )^2 \, dx=\int { {\left (b \csc \left (d x^{n} + c\right ) + a\right )}^{2} \left (e x\right )^{3 \, n - 1} \,d x } \]

[In]

integrate((e*x)^(-1+3*n)*(a+b*csc(c+d*x^n))^2,x, algorithm="maxima")

[Out]

1/3*(e*x)^(3*n)*a^2/(e*n) - (2*b^2*e^(3*n)*x^(2*n)*sin(2*d*x^n + 2*c) - (d*e*n*cos(2*d*x^n + 2*c)^2 + d*e*n*si
n(2*d*x^n + 2*c)^2 - 2*d*e*n*cos(2*d*x^n + 2*c) + d*e*n)*integrate(2*(a*b*d*e^(3*n)*x^(3*n) - b^2*e^(3*n)*x^(2
*n))*sin(d*x^n + c)/(d*e*x*cos(d*x^n + c)^2 + d*e*x*sin(d*x^n + c)^2 + 2*d*e*x*cos(d*x^n + c) + d*e*x), x) - (
d*e*n*cos(2*d*x^n + 2*c)^2 + d*e*n*sin(2*d*x^n + 2*c)^2 - 2*d*e*n*cos(2*d*x^n + 2*c) + d*e*n)*integrate(2*(a*b
*d*e^(3*n)*x^(3*n) + b^2*e^(3*n)*x^(2*n))*sin(d*x^n + c)/(d*e*x*cos(d*x^n + c)^2 + d*e*x*sin(d*x^n + c)^2 - 2*
d*e*x*cos(d*x^n + c) + d*e*x), x))/(d*e*n*cos(2*d*x^n + 2*c)^2 + d*e*n*sin(2*d*x^n + 2*c)^2 - 2*d*e*n*cos(2*d*
x^n + 2*c) + d*e*n)

Giac [F]

\[ \int (e x)^{-1+3 n} \left (a+b \csc \left (c+d x^n\right )\right )^2 \, dx=\int { {\left (b \csc \left (d x^{n} + c\right ) + a\right )}^{2} \left (e x\right )^{3 \, n - 1} \,d x } \]

[In]

integrate((e*x)^(-1+3*n)*(a+b*csc(c+d*x^n))^2,x, algorithm="giac")

[Out]

integrate((b*csc(d*x^n + c) + a)^2*(e*x)^(3*n - 1), x)

Mupad [F(-1)]

Timed out. \[ \int (e x)^{-1+3 n} \left (a+b \csc \left (c+d x^n\right )\right )^2 \, dx=\int {\left (a+\frac {b}{\sin \left (c+d\,x^n\right )}\right )}^2\,{\left (e\,x\right )}^{3\,n-1} \,d x \]

[In]

int((a + b/sin(c + d*x^n))^2*(e*x)^(3*n - 1),x)

[Out]

int((a + b/sin(c + d*x^n))^2*(e*x)^(3*n - 1), x)